Precision Oncology: From Single Mutations to Whole Genomes

REFERENCES

1. Von Hoff, D. D., et al. (2010). Pilot study using molecular profiling of patients’ tumors to find potential targets and select treatments for their refractory cancers. Journal of Clinical Oncology, 28 (33), 4877–4883. https://doi.org/10.1200/ JCO.2009.26.5983 2. Wheler, J. J., et al. (2016). Cancer therapy directed by comprehensive genomic profiling: A single center study. Cancer Research, 76 (13), 3690–3701. https://doi.org/10.1158/0008- 5472.CAN-15-3043 3. The Cancer Genome Atlas Network. (2012). Comprehensive molecular portraits of human breast tumours. Nature, 490 (7418), 61–70. https://doi.org/10.1038/nature11412 4. Vogelstein, B., et al. (2013). Cancer genome landscapes. Science, 339 (6127), 1546–1558. https://doi.org/10.1126/ science.1235122 5. Dienstmann, R., et al . (2017). Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nature Reviews Cancer, 17 (2), 79–92. https://doi.org/10.1038/ nrc.2016.126 6. Selly, A. (2024, October 10). Seeing cancer as a chronic illness. Targeted Oncology. https://www.targetedonc.com/ view/seeing-cancer-as-a-chronic-illness 7. Papadimitrakopoulou, V., et al. (2016). The BATTLE-2 study: A biomarker-integrated targeted therapy study in previously treated patients with advanced non-small-cell lung cancer. Journal of Clinical Oncology, 34 (30), 3638–3647. https://doi.org/10.1200/JCO.2015.66.0084 8. Van Cutsem, E., et al. (2009). Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. The New England Journal of Medicine, 360 (14), 1408–1417. https://doi.org/10.1056/NEJMoa0805019 9. AACR Project GENIE Consortium. (2017). AACR Project GENIE: Powering precision medicine through an international consortium. Cancer Discovery, 7 (8), 818–831. https://doi.org/10.1158/2159-8290.CD-17-0151 10. Schwaederle, M., et al . (2015). Impact of precision medicine in diverse cancers: A meta-analysis of phase II clinical trials. Journal of Clinical Oncology, 33 (32), 3817–3825. https://doi.org/10.1200/JCO.2015.61.5997 11. Tjota, M. Y., Segal, J. P., & Wang, P. (2024). Clinical utility and benefits of comprehensive genomic profiling in cancer. J ournal of Applied Laboratory Medicine, 9 (1), 76–91. https://doi.org/10.1093/jalm/jfad091 12. Hyman, D. M., et al. (2015). Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. The New England Journal of Medicine, 373 (8), 726–736. https://doi.org/10.1056/NEJMoa1502309 13. U.S. Food and Drug Administration. (n.d.). List of cleared or approved companion diagnostic devices (in vitro and imaging tools) . Retrieved June 5, 2025, from https://www. fda.gov/medical-devices/in-vitro-diagnostics/list-cleared- or-approved-companion-diagnostic-devices-in-vitro-and- imaging-tools 14. Merker, J. D., et al . (2018). Circulating tumor DNA analysis in patients with cancer: American Society of Clinical Oncology and College of American Pathologists joint review. Journal of Clinical Oncology, 36 (16), 1631–1641. https://doi.org/10.1200/ JCO.2017.76.8671 15. Roychowdhury, S., & Chinnaiyan, A. M. (2014). Translating genomics for precision cancer medicine. Annual Review of Genomics and Human Genetics, 15 , 395–415. https://doi.org/10.1146/annurev-genom-090413-025552

16. Frampton, G. M., et al. (2013). Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nature Biotechnology, 31 (11), 1023– 1031. https://doi.org/10.1038/nbt.2696 17. Jennings, L. J., et al . (2017). Guidelines for validation of next-generation sequencing-based oncology panels: A joint consensus recommendation of the Association for Molecular Pathology and College of American Pathologists. The Journal of Molecular Diagnostics, 19 (3), 341–365. https://doi.org/10.1016/j.jmoldx.2017.01.011 18. Severson, Z. D., et al. (2025). RNA hybrid-capture next- generation sequencing has high sensitivity in identifying known and less characterized oncogenic and likely oncogenic NTRK fusions in a real-world standard-of- care setting. Frontiers in Genetics, 16, Article 1550706. https://doi.org/10.3389/fgene.2025.1550706 19. Heitzer, E., et al. (2019). Current and future perspectives of liquid biopsies in genomics-driven oncology. Nature Reviews Genetics, 20 (2), 71–88. https://doi.org/10.1038/s41576-018- 0071-5 20. Belkadi, A., et al. (2015). Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proceedings of the National Academy of Sciences of the United States of America, 112 (17), 5473–5478. https://doi.org/10.1073/pnas.1418631112 21. Muir, P., et al. (2016). The real cost of sequencing: Scaling computation to keep pace with data generation. Genome Biology, 17 , Article 53. https://doi.org/10.1186/s13059-016-0917-0 22. Merino, D. M., et al. (2020). Establishing guidelines to harmonize tumor mutational burden (TMB): In silico assessment of variation in TMB quantification across diagnostic platforms: Phase I of the Friends of Cancer Research TMB Harmonization Project. Journal for ImmunoTherapy of Cancer, 8 (1), e000147. https://doi.org/10.1136/jitc-2019-000147 23. Cuppen, E., et al. (2022). Implementation of whole-genome and transcriptome sequencing into clinical cancer care. JCO Precision Oncology, 6, e2200245. https://doi.org/10.1200/ PO.22.00245 24. Goodwin, S., McPherson, J., & McCombie, W. (2016). Coming of age: Ten years of next-generation sequencing technologies. Nature Reviews Genetics, 17 (6), 333–351. https://doi.org/10.1038/ nrg.2016.49 25. Torga, G., & Pienta, K. J. (2018). Patient-paired sample congruence between 2 commercial liquid biopsy tests. JAMA Oncology, 4 (6), 868–870. https://doi.org/10.1001/ jamaoncol.2017.4027 26. Riedl, J. M., et al. (2024). Molecular diagnostics tailoring personalized cancer therapy—An oncologist’s view. Virchows Archiv, 484 (2), 169–179. https://doi.org/10.1007/s00428-023- 03702-7 27. Hindson, B. J., et al. (2011). High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Analytical Chemistry, 83 (22), 8604–8610. https://doi.org/10.1021/ ac202028g 28. Ståhl, P. L., et al. (2016). Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science, 353 (6294), 78–82. https://doi.org/10.1126/science. aaf2403 29. Nam, A. S., Chaligne, R., & Landau, D. A. (2021). Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics. Nature Reviews Genetics, 22 (1), 3–18. https://doi.org/10.1038/s41576-020-0265-5

11

Powered by